

Fluvial Channel Reservoirs 20 years diagnosing their reservoir engineering attributes

Patrick Corbett

BG Group Professor Carbonate Petroleum Geoengineering Institute of Petroleum Engineering School of Energy, Geoscience, Infrastructure and Society Heriot-Watt University, Edinburgh

RRR Talk, 29th September; EGS Talk 12th October 2016

Difference between a canal and a channel

• Canal

Channel(s)

Difference between a canal and a channel

Canal

Channel(s)

Difference between a canal and a channel

Canal

Talk format

- Well testing background
- Three fluvial well testing examples
- Incorporate training images from Google Earth
- New words Geoskin, Geochoke, Georamp,....
- Summary
- Discussion

Basic transient well testing

Solution to the diffusivity equation for the following assumptions:

- Line source solution
- Homogeneous and isotropic medium
- Pressure independent rock/fluid properties
- Small Pressure gradients
- Radial flow
- Applicability of Darcy's Law
- Negligible Gravity
- Infinite acting reservoir

Skin

• Difference between pressure at shut-in and after 1hr (on the Horner straight line) (Bourdarot, 1998)

Skin

- Measure of damage or enhancement
- Mechanical skin
- Partial perforations (+)
- Dipping beds (-)
- Drilling solids damage (+)
- Turbulent flow in gas wells Non-Darcy skin (+)
- Geological skin (Geoskin)
- Natural fractures (-)
- Rapid thickness changes faults or sandbody (+)
- Cemented nodules (+)
- High perm. pseudo-fractures (-)

Pressure derivative plots

Flow regimes

Corbett, EAGE/SEG DISC 2009

Flow regimes

Corbett, EAGE/SEG DISC 2009

Well testing

20 Years ago – Dalmellington Quarry, Ayrshire

Photomontage of analogue outcrop (working face)

Permeability profiles and borehole locations from analogue site

Lithofacies associations recognised in worked face with well placement and perforated intervals

Simulation grid from Lith (5x vertical exagg.)

Dunlop and Corbett, 1996

First numerical well test results

Dunlop and Corbett, 1996

New Braided Fluvial Models

Corbett et al., 2012

Case Study 1: Indian Example

Corbett et al., 2012

Simulation Model

Global Hydraulic Elements

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 10 1 Time [hr]

Corbett et al., 2012

Case Study 2: Colombian Example

- Field G located in Middle Magdalena Valley Basin
- Well G1 (2012), Initial Production 300 BOPD
- Well G2 & G2 ST (2014), Initial Production 980 BOPD
- Hydrocarbon: 24 o API
- Shaly Sandstone Formation

Unpubl., HWU MSc Thesis, 2015 Gleyden Lucila Duarte Benitez

From: Satellite Image - Google Earth

Geological Map of Colombia

From: Gomez et al. SPE 122234 Nuevo Mundo Syncline

Source: Unpublished Ecopetrol Report

Reservoir Geology

Depositional Environment

Lithofacies and poroperms

Modern River Analogue

Training Image 1

Sand Accumulation away from the main channel

Training Image 2

Sand deposition within the main channel

Reservoir Static Model

1:34008

Reservoir Static Model

Fine Model 50 x 50 x 0.5 m

Reservoir Static Model

GeoModel 1 (Training Image 1)

GeoModel 2 (Training Image 2)

Analytical Well Testing Interpretation

Results

Kv/Kh Sensitivity

Case study 3: Unknown field example

Hamdi et al., 2014

Example of a modern Fluvial System (Parana River, S America)

Importance of good analogues

Hamdi et al., 2014

Example of a modern Fluvial System (Magdalena River, S America)

Multiple Multipoint Training Images and Realisations

Dynamic Calibration

Challenges/Opportunities

- Appreciation of Canal vs Channel models
- Modern Rivers
 - Choosing the right analogy
 - Google Earth vs Real Earth
- Preservation of fluvial systems
- Importance of anisotropy $(k_v/k_h, k_x, k_y, k_z)$
- Need for appropriate "fluvial" geological language
 - Braided/Meandering/Anastomosing/Linear
 - Laterally connected stacking pattern
- New fluvial well test language
 - Geoskin
 - Geochoke
 - (Geo)Ramp (extended comingled lateral cross-flow)
 - Isolated meander-loop depletion/recharge ("De Rooij" Model)
- Better communication ("geoengineering")

New Braided Fluvial Models

Back to the past – Spireslack Quarry, Ayrshire

Edwards, 2016

References

- Dunlop, and Corbett, 1996, "Well test modelling in a multi-storey fluvial channel" Best Poster Winner, EAPG Amsterdam
- Corbett, 2009, *Petroleum Geoengineering: Integration of Static and Dynamic Models*, SEG/EAGE Distinguished Instructor Series, **12**, SEG, 100p. ISBN 978-1-56080-153-5
- Corbett, Hamdi and Gurev, 2012, Layered Reservoirs with Internal Crossflow: A Well-Connected Family of Well-Test Pressure Transient Responses, *Petroleum Geoscience*, v18, 219-229.
- De Rooij, Corbett, and Barens, 2002, Point Bar geometry, connectivity and well test signatures, *First Break*, **20**, 755-763
- Hamdi, Reulland, Bergey and Corbett, 2014, Using geological well testing in the improved selection of appropriate reservoir models. (Accepted for Publication in *Petroleum Geoscience* – online first) <u>http://pg.geoscienceworld.org/content/early/recent</u> v. 20 no. 4 p. 353-368
- Corbett and Benitez, 2016, Geological Well Testing useful for integrating static and dynamic models (in prep.)